Topological properties of microwave magnetoelectric fields.
نویسندگان
چکیده
Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves.
منابع مشابه
Azimuthally unidirectional transport of energy in magnetoelectric fields: topological Lenz’s effect
Magnetic-dipolar modes (MDMs) in a quasi-2D ferrite disc are microwave energy-eigenstate oscillations with topologically distinct structures of rotating fields and unidirectional power-flow circulations. At the first glance, this might seem to violate the law of conservation of an angular momentum, since the microwave structure with an embedded ferrite sample is mechanically fixed. However, an ...
متن کاملMicrowave magnetoelectric fields: An analytical study of topological characteristics
The near fields originated from a small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillations are the fields with broken dual (electric-magnetic) symmetry. Numerical studies show that such fields – called the magnetoelectric (ME) fields – are distinguished by the power-flow vortices and helicity parameters (E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87 (2013)...
متن کاملUnidirectional magnetoelectric-field multiresonant tunneling
Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropicdielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks ...
متن کاملMicrowave magnetoelectric fields: helicities and reactive power flows
Symmetry principles play an important role with respect to the laws of nature. To put into a symmetrical shape the equations, coupling together the electric and magnetic fields, Maxwell added an electric displacement current. Such an additive, introduced for reasons of symmetry, resulted in appearing a unified-field structure: the electromagnetic field. The electric displacement current in Maxw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2014